CRISPR Detection Service

Service Details

Deliverables Target plasmid
RPA isothermal amplification primers
Project report
CRISPR reagent kit for 50 reactions
Applications 1. Disease detection
2. Food safety
3. Animal disease diagnostics
4. Environmental monitoring
Turnaround/Price   Consult online for details

FASST Rapid Detection Platform

FASST (Fast, Accurate, Specific, and Simple Test) is a next-generation, high-sensitivity, high-specificity, rapid isothermal single-tube nucleic acid detection technology based on CRISPR. Relying on the synergistic action of multiple enzymes at room temperature, FASST enables rapid nucleic acid amplification and detection. It offers dual specificity and dual signal amplification, making it a true point-of-care testing (POCT) technology.
 
Traditional CRISPR detection methods typically involve either two-tube or single-tube reactions. Two-tube reactions are complex and prone to contamination, while single-tube reactions, though simpler and with lower contamination risk, often suffer from low sensitivity and are time-consuming. The FASST technology, developed through EDITGENE's proprietary protein purification platform, overcomes these challenges by optimizing Cas enzyme structures and employing unique crRNA design logic. This approach enables the production of highly efficient crRNA and reporters, creating a single-tube detection system. It reduces contamination risk, improves detection sensitivity to the amol level, and shortens detection time to just 10 minutes, achieving highly sensitive, specific, rapid, and accurate nucleic acid detection, addressing the limitations of traditional CRISPR detection methods.
 
 
 
Schematic Diagram

EDI-Service Advantages

Fast
Results in 5-20 minutes, achieving truly "rapid" detection
Sensitive
High-efficiency reaction, reaching detection limits at the amol level
Simple
Single-step sampling, easy to operate, constant temperature, and portable equipment.
Accurate
Dual specificity ensures precise target recognition

Technology Comparison

Item FASST PCR LAMP (Isothermal Amplification) Traditional CRISPR Detection

Reaction Temperature

37-42℃ (Isothermal)

95℃-55℃-72℃ (Variable)

65℃ (Isothermal)

37-42℃ (Isothermal)

Run Time 5-20 mins 1-2h 40-60mins 30-60 mins

Primer Quantity

2 primers

2 primers

4-6 primers

2 primers

Reagent Form Liquid/ Lyophilized Liquid Liquid Liquid/Lyophilized
Equipment Requirement Isothermal equipment (metal bath, water bath, etc.) PCR Amplifier Isothermal equipment Isothermal equipment (metal bath, water bath, etc.)
Ease of Use Extremely simple, truly portable Requires professional operation, complex equipment Simple to operate Extremely simple, truly portable
Aerosol Contamination Single-tube reaction, low contamination risk Risk of aerosol contamination Risk of aerosol contamination Two-tube reaction, risk of aerosol contamination

Services Provided by EDITGENE

EDITGENE offers the FASST rapid detection technology, a high-sensitivity, high-specificity, and fast isothermal nucleic acid detection platform developed based on CRISPR. FASST addresses the challenges of traditional CRISPR detection, such as complexity, contamination risks, low sensitivity, and long detection times. Leveraging our proprietary protein purification platform, we have optimized the Cas enzyme structure, developed a unique crRNA design logic, and produced highly efficient crRNAs. By using custom-designed reporters, we achieve higher sensitivity detection while simplifying operation and reducing contamination risks. Based on your experimental needs, you can choose between stepwise custom services or full-suite custom detection services.

Service Content and Delivery Standards

Service Content Service Description Delivery Standard

Preparation of Target Gene Template

Synthesis of target plasmid Target plasmid
Design and Synthesis of crRNA and RPA Isothermal Amplification Primers Design of crRNA and RPA primers based on the target sequence crRNA,2 OD
Activity Screening of RPA Isothermal Amplification Primers Multiple RPA primers are used to amplify the target sequence, and the most efficient primer sequence is selected RPA isothermal amplification primers, 2 OD
Activity Screening of crRNA Multiple crRNAs are analyzed for activity, and the most efficient crRNA is identified Final report and raw data
Establishment and Optimization of Experimental System for crRNA and RPA Isothermal Amplification Primers Sensitivity, specificity, and accuracy tests for crRNA and RPA Final report and raw data
FASST Full-suite Detection Services / Final report and CRISPR reagent kit for 50 reactions

Workflow

Case Study

① African Swine Fever Virus Detection
Results: Using ASFV 1070, the FASST technology can detect African Swine Fever Virus, identifying 100-1000 copies of nucleic acid within 10 minutes, and 10-50 copies within 20 minutes.
 
 
 
② Parrot Bornavirus Detection
Results: The CRISPR/Cas12a two-tube detection method (30 minutes for RPA reaction and 10 minutes for CRISPR detection) can detect as few as 10 copies of Parrot Bornavirus nucleic acid within 40 minutes.
 
 
 
③ Brucella abortus Detection
Results: The CRISPR/Cas12a two-tube detection method (30 minutes for RPA reaction and 10 minutes for CRISPR detection) can detect as few as 100 copies of Brucella abortus nucleic acid within 40 minutes.
 

Advantage and Characteristic

Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic

Selected Customer Resources

IF=50.5
Nature

Abstract:

To date, more than half of global hepatocellular carcinoma (HCC) cases occur in China, yet comprehensive whole-genome analyses focusing on HBV-related HCC within the Chinese population remain scarce. To address this challenge, researchers initiated the China Liver Cancer Atlas (CLCA) project, aiming to conduct large-scale whole-genome sequencing to unravel the unique pathogenic mechanisms and evolutionary trajectories of HCC in China.

The researchers performed deep whole-genome sequencing on 494 HCC tumor samples, with an average depth of 120×, alongside matched blood controls, providing a detailed genomic landscape of HBV-associated HCC. Beyond confirming well-known coding driver genes such as TP53 and CTNNB1, the study identified six novel coding drivers—including FGA—and 31 non-coding driver genes.

Additionally, the research uncovered five new mutational signatures, including SBS_H8, and characterized the presence of extrachromosomal circular DNA (ecDNA) formed via HBV integration, which contributes to oncogene amplification and overexpression. Functional validation experiments demonstrated that mutations in genes such as FGA, PPP1R12B, and KCNJ12 significantly enhance HCC cell proliferation, migration, and invasion.

These findings not only deepen our insights into the genomics of HCC, but also open up new potential targets for diagnosis and therapy. View details>>

Candidate driver landscape

 

IF=27.4
Advanced Materials

Abstract:

During the acute inflammatory phase of tendon injury, excessive activation of macrophages leads to the overexpression of SPP1, which encodes osteopontin (OPN), thereby impairing tissue regeneration. The CRISPR-Cas13 system holds great promise for tissue repair due to its unique RNA editing and rapid degradation capabilities; however, its application has been limited by the lack of efficient delivery methods.

To address this, the researchers systematically screened various cationic polymers targeting macrophages and developed a nanocluster carrier capable of efficiently delivering Cas13 ribonucleoprotein complexes (Cas13 RNPs) into macrophages. Utilizing a reactive oxygen species (ROS)-responsive release mechanism, this system specifically suppresses the overexpression of SPP1 in macrophages within the acute inflammatory microenvironment of tendon injury.

Experimental results demonstrated that this targeted delivery strategy significantly reduced the population of SPP1-overexpressing macrophages induced by injury, inhibited fibroblast activation, and alleviated peritendinous adhesion formation. Furthermore, the study elucidated that SPP1 promotes fibroblast activation and migration through the CD44/AKT signaling pathway, and that inhibiting this pathway effectively mitigates adhesion formation following tendon injury. View details>>

Schematic diagram illustrating immune microenvironment-activated mRNA editing strategies of macrophages for PA therapy

IF=12.8
Biomaterials

Abstract:

Spinal cord injury (SCI) is a severe disabling condition that causes permanent loss of sensory, autonomic, and motor functions. While stem cell therapies, particularly mesenchymal stem cells (MSCs), show great promise for SCI treatment, their limited regenerative capacity restricts their application in tissue repair. The researchers observed that extracellular vesicles derived from antler bud progenitor cells (EVsABPC) may carry bioactive signals that promote tissue regeneration. Accordingly, they isolated and engineered EVs from ABPCs for SCI therapeutic investigation.

The study found that EVsABPC significantly enhanced neural stem cell (NSC) proliferation, promoted axonal growth, reduced neuronal apoptosis, and modulated inflammation by shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Moreover, engineered EVsABPC modified with cell-penetrating peptides demonstrated improved targeting to the SCI lesion site, markedly enhancing neural regeneration and functional motor recovery. These findings highlight EVsABPC as a promising candidate for SCI therapy. View details>>

Graphical abstract

IF=11.3
Journal of Hazardous Materials

Abstract:

S-metolachlor (S-MET) is one of the most widely produced and applied herbicides in China. Owing to its chemical properties, it tends to persist in soil and easily contaminates surface and groundwater through leaching and runoff. This environmental persistence poses a serious threat to plant development and, through the food chain, to human health.

To address the limitations of current detection technologies and meet the growing demand for high-efficiency analytical tools, the researchers employed a mammalian expression system to generate recombinant antibodies targeting S-MET.

Building on the successful expression of these antibodies, they established a sensitive immunoassay for monitoring S-MET residues in various environmental water samples. The icELISA results showed that the recombinant antibodies retained the sensitivity, specificity, and biological activity of the original monoclonal antibodies, delivering accurate and reproducible detection in river water, agricultural runoff, and tap water. View details>>

Graphical abstract

 

IF=10.7
Biosensors and Bioelectronics

Abstract:

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression by interacting with the mRNAs of target genes. Given their crucial role in the development and progression of various diseases, miRNAs have emerged as promising biomarkers for clinical diagnostics.

In this study, researchers established a novel detection platform, termed DBmRCA, which combines dumbbell probe-initiated multi-rolling circle amplification with the high-sensitivity signal output of CRISPR/Cas12a. This enzyme-free, isothermal method enables accurate quantification of miRNA within just 30 minutes.

Clinical validation revealed that the expression levels of miR-200a and miR-126 were significantly downregulated in lung cancer tissues, and results from DBmRCA were consistent with those obtained by conventional techniques. With its high sensitivity, rapid turnaround, and simplified workflow, the DBmRCA platform presents a reliable tool for miRNA detection and holds strong promise for early diagnosis and therapeutic monitoring of lung cancer. View details>>

Graphical abstract

FAQ

1.Design an efficient crRNA sequence. Proper design and structure prediction using online resources can help select suitable crRNA to achieve good trans-cleavage activity of the Cas enzyme.
2.Choose an appropriate signal reporter substrate. Research indicates that using a 15 nt single-stranded DNA (ssDNA) as a reporter substrate maximizes the cleavage reaction rate of Cas12a, significantly enhancing the reaction rate compared to the commonly used 5-nt ssDNA.
3.Optimize reaction conditions and buffers. Adjusting the CRISPR reaction parameters, such as the ratio of Cas enzyme to crRNA, the concentration of the Cas enzyme, and the reaction temperature, can improve detection performance to some extent.
1.The design process can follow these steps:
1.Identify the target gene sequence.
2.Specify the Cas protein being used. Different Cas proteins require corresponding PAM (Protospacer Adjacent Motif) sequences; for instance, Cas12a needs the "TTTV" PAM sequence for target recognition.
3.Select the crRNA targeting region. Choose a 20 nt nucleotide sequence on the target gene that is adjacent to the PAM site and pairs with the complementary strand of the crRNA.
4.Combine the selected 20 nt target sequence (variable part) with the scaffold sequence (fixed part) to design the crRNA sequence.
5.Use online tools such as CRISPR design tools (e.g., CRISPOR, Benchling, etc.) to assist in designing crRNA. These tools can predict the efficiency and specificity of the sgRNA, helping to avoid potential off-target effects.
6.After completing the design, the synthetic crRNA sequence can be ordered from a synthetic biology company.

Contact Us

*
*
*
*
How did you hear about us:
Contact Us
*
*
*
*
How did you hear about us: