Monoclonal Screening

Monoclonal screening refers to isolating a single clone from a mixed cell pool, ensuring the uniformity and stability of the genetic background in cell lines. This process has significant applications in various aspects of biopharmaceutical production and research. For instance, it ensures that engineered cells used in production are derived from the same original cell, thus maintaining consistent product quality and expression levels. After gene editing or modification, cell populations typically exhibit varying degrees of genetic modification. Monoclonal screening allows for the selection of cell populations with a uniform genetic background and stable gene edits, ensuring genetic consistency across all cells.

Service Details

Deliverables At least 1 target monoclonal cell line (1×10^6 cells per line)
Turnaround/Price   Consult online for details
EDITGENE utilizes state-of-the-art 3D single-cell printing technology to precisely isolate individual cells, significantly improving the accuracy of monoclonal screening and cell viability. This non-contact operation avoids mechanical damage and contamination, helping to preserve cell integrity and biological activity. Compared to traditional limiting dilution methods, 3D single-cell printing minimizes human error in monoclonal isolation, ensuring the reliability of screening results.

EDI-Service Advantages

Wide Applicability
Suitable for a wide range of cell types without requiring resistance or fluorescent tags.
High Screening Efficiency
100% monoclonal rate.
Reliable Screening Results
Provides clone formation images for each monoclonal selection.
Extremely High Cell Survival Rate
Gentle microfluidic technology ensures higher survival rates.

Workflow

Advantage and Characteristic

Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic

Reference Materials

Article Title: Droplets for Gene Editing Using CRISPR-Cas9 and Clonal Selection Improvement Using Hydrogels

This study presents an innovative approach that combines CRISPR-Cas9 gene editing technology with single-cell isolation techniques applied to induced pluripotent stem cell (hiPSC) lines. By utilizing droplets and hydrogels, this method optimizes clonal selection, significantly enhancing the efficiency of monoclonal screening while reducing the time and cost associated with generating stable cell lines. This method not only accelerates the generation of stable cell lines but also demonstrates enormous potential in disease modeling and cell physiology research, providing a more efficient and economical solution for monoclonal screening.

Selected Customer Resources

IF=50.5
Nature

Abstract:

To date, more than half of global hepatocellular carcinoma (HCC) cases occur in China, yet comprehensive whole-genome analyses focusing on HBV-related HCC within the Chinese population remain scarce. To address this challenge, researchers initiated the China Liver Cancer Atlas (CLCA) project, aiming to conduct large-scale whole-genome sequencing to unravel the unique pathogenic mechanisms and evolutionary trajectories of HCC in China.

The researchers performed deep whole-genome sequencing on 494 HCC tumor samples, with an average depth of 120×, alongside matched blood controls, providing a detailed genomic landscape of HBV-associated HCC. Beyond confirming well-known coding driver genes such as TP53 and CTNNB1, the study identified six novel coding drivers—including FGA—and 31 non-coding driver genes.

Additionally, the research uncovered five new mutational signatures, including SBS_H8, and characterized the presence of extrachromosomal circular DNA (ecDNA) formed via HBV integration, which contributes to oncogene amplification and overexpression. Functional validation experiments demonstrated that mutations in genes such as FGA, PPP1R12B, and KCNJ12 significantly enhance HCC cell proliferation, migration, and invasion.

These findings not only deepen our insights into the genomics of HCC, but also open up new potential targets for diagnosis and therapy. View details>>

Candidate driver landscape

 

IF=27.4
Advanced Materials

Abstract:

During the acute inflammatory phase of tendon injury, excessive activation of macrophages leads to the overexpression of SPP1, which encodes osteopontin (OPN), thereby impairing tissue regeneration. The CRISPR-Cas13 system holds great promise for tissue repair due to its unique RNA editing and rapid degradation capabilities; however, its application has been limited by the lack of efficient delivery methods.

To address this, the researchers systematically screened various cationic polymers targeting macrophages and developed a nanocluster carrier capable of efficiently delivering Cas13 ribonucleoprotein complexes (Cas13 RNPs) into macrophages. Utilizing a reactive oxygen species (ROS)-responsive release mechanism, this system specifically suppresses the overexpression of SPP1 in macrophages within the acute inflammatory microenvironment of tendon injury.

Experimental results demonstrated that this targeted delivery strategy significantly reduced the population of SPP1-overexpressing macrophages induced by injury, inhibited fibroblast activation, and alleviated peritendinous adhesion formation. Furthermore, the study elucidated that SPP1 promotes fibroblast activation and migration through the CD44/AKT signaling pathway, and that inhibiting this pathway effectively mitigates adhesion formation following tendon injury. View details>>

Schematic diagram illustrating immune microenvironment-activated mRNA editing strategies of macrophages for PA therapy

IF=12.8
Biomaterials

Abstract:

Spinal cord injury (SCI) is a severe disabling condition that causes permanent loss of sensory, autonomic, and motor functions. While stem cell therapies, particularly mesenchymal stem cells (MSCs), show great promise for SCI treatment, their limited regenerative capacity restricts their application in tissue repair. The researchers observed that extracellular vesicles derived from antler bud progenitor cells (EVsABPC) may carry bioactive signals that promote tissue regeneration. Accordingly, they isolated and engineered EVs from ABPCs for SCI therapeutic investigation.

The study found that EVsABPC significantly enhanced neural stem cell (NSC) proliferation, promoted axonal growth, reduced neuronal apoptosis, and modulated inflammation by shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Moreover, engineered EVsABPC modified with cell-penetrating peptides demonstrated improved targeting to the SCI lesion site, markedly enhancing neural regeneration and functional motor recovery. These findings highlight EVsABPC as a promising candidate for SCI therapy. View details>>

Graphical abstract

IF=11.3
Journal of Hazardous Materials

Abstract:

S-metolachlor (S-MET) is one of the most widely produced and applied herbicides in China. Owing to its chemical properties, it tends to persist in soil and easily contaminates surface and groundwater through leaching and runoff. This environmental persistence poses a serious threat to plant development and, through the food chain, to human health.

To address the limitations of current detection technologies and meet the growing demand for high-efficiency analytical tools, the researchers employed a mammalian expression system to generate recombinant antibodies targeting S-MET.

Building on the successful expression of these antibodies, they established a sensitive immunoassay for monitoring S-MET residues in various environmental water samples. The icELISA results showed that the recombinant antibodies retained the sensitivity, specificity, and biological activity of the original monoclonal antibodies, delivering accurate and reproducible detection in river water, agricultural runoff, and tap water. View details>>

Graphical abstract

 

IF=10.7
Biosensors and Bioelectronics

Abstract:

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression by interacting with the mRNAs of target genes. Given their crucial role in the development and progression of various diseases, miRNAs have emerged as promising biomarkers for clinical diagnostics.

In this study, researchers established a novel detection platform, termed DBmRCA, which combines dumbbell probe-initiated multi-rolling circle amplification with the high-sensitivity signal output of CRISPR/Cas12a. This enzyme-free, isothermal method enables accurate quantification of miRNA within just 30 minutes.

Clinical validation revealed that the expression levels of miR-200a and miR-126 were significantly downregulated in lung cancer tissues, and results from DBmRCA were consistent with those obtained by conventional techniques. With its high sensitivity, rapid turnaround, and simplified workflow, the DBmRCA platform presents a reliable tool for miRNA detection and holds strong promise for early diagnosis and therapeutic monitoring of lung cancer. View details>>

Graphical abstract

FAQ

Monoclonal screening is the process of isolating a single clone from a mixed pool of cells and expanding that clone into a cell line. Monoclonal screening ensures that the cell lines used originate from a single cell, guaranteeing a high degree of genetic background consistency. After cells are gene-edited or genetically modified, the genetic background differences among the cells in the initial cell pool can be significant, making subsequent experimental results inaccurate. By using monoclonal screening, researchers can obtain cell populations with consistent genetic backgrounds and stable gene edits, allowing for stable and accurate monitoring of phenotypic changes.
EDITGENE’s 3D single-cell printing technology employs non-contact operation, avoiding mechanical damage and background contamination, which helps maintain cell integrity and biological activity. This technology also minimizes human error in the traditional limited dilution method of monoclonal selection, ensuring the reliability of screening results.
EDITGENE utilizes industry-leading 3D single-cell printing technology, which enables precise isolation and positioning of individual cells, significantly increasing the success rate and efficiency of monoclonal screening. This technology is widely applied in biomedicine research, antibody development, drug screening, and therapeutic selection, showcasing broad application prospects in cell research.

Contact Us

*
*
*
*
How did you hear about us:
Contact Us
*
*
*
*
How did you hear about us: