Knockout Cell Line

Gene knockout technology can accurately remove or inactivate the specific genes. Constructing the gene knockout cell models is with wide applications in revealing the functions of genes in organisms and in scientific research, drug target screening, and other fields. The existing gene editing tools include CRISPR/Cas9, TALENs, or ZFNs. At present, the CRISPR/Cas9 system has become the preferred tool for gene knockout due to its high efficiency and ease of operation. This system utilizes the complementary gRNA to guide Cas9 nuclease to specifically recognize and cleave the target DNA, resulting in DNA double strand breaks (DSBs) and achieving gene knockout.
Browse Our Knockout Cell Bank  to explore readily available knockout models and accelerate your research.

Service Details

Cell Types Various cell types, including tumor, conventional, stem, primary, and immortalized cell lines.
Services Single-gene knockout / multi-genes knockout
Deliverables Homozygous KO cell clones: ≥1 clone (2 vials per clone, 1 × 10^6 cells per vial)
Turnaround / Price 4 weeks,as low as $1800   Consult online for details
Based on the gene editing platform EditX™ gindependently developed by EDITGENE, we adopt an optimized and upgraded CRISPR/Cas9 system, which can develop the appropriate knockout strategies and plans according to genes, cells, and experimental purposes, and efficiently construct the gene knockout cell models that meet the experimental purposes.

EDI-Service Advantages

Efficient guide RNA Design
With thousands of projects, EDITGENE's proprietary guide RNA design ensures exceptional gene editing results
High-Performance Cas9 Protein
EDITGENE provides patented, high-activity Cas9 protein that significantly boosts editing efficiency
Efficient Cell Transfection
With well-established systems, EDITGENE offers lentiviral, plasmid, RNP transfection, and more
Streamlined Cell Screening Solutions
3D printing enables precise, efficient selection of positive monoclonal clones

Knockout Cell Line Services

We design customized knockout strategies tailored to client needs and gene characteristics.
Frameshift Mutation guide RNA is targeted to an exon and the number of deletion bases is not a multiple of three. After knockout, a code-shifting mutation would cause gene knockout.
Large Fragment Deletion Strategic guide RNA design to enable the deletion of substantial gene segments.

Workflow

Case Study

Based on our customers' needs, EDITGENE carefully considers the specific characteristics of target genes and cells to design precise gene knockout protocols.
 
Knockout Types We Offer
At EDITGENE, we provide a diverse range of gene knockout strategies tailored to different research needs and experimental goals:
 
1. Frameshift Knockout (gKO)
Introduction of small insertions or deletions (indels) at the target site to disrupt the open reading frame, resulting in premature stop codons and loss of functional protein expression.
Ideal for creating complete loss-of-function models through single-site edits.

Case Study Highlights
Objective: Single-Gene Knockout in HEK293 Cells
Project Goal: Achieved efficient knockout of Gene A in HEK293 cell lines, providing a robust model for downstream functional studies.
Project Design: sgRNA was designed in exon 2 of gene A.
 
 
 
Sequencing results: A 1-base deletion occurred at the sgRNA site of gene A with a knockout efficiency of 100%, resulting in a frameshift mutation that caused premature termination of expression, indicating that gene A was successfully knocked out.
 
2. Fragment Knockout
Precise deletion of a larger genomic region (typically several hundred to several thousand base pairs), removing essential exons or functional domains of a gene.
Suitable for eliminating critical functional regions to ensure gene inactivation and to study domain-specific effects.

Case Study Highlights
Objective: Precise Small Fragment Knockout in Huh6 Cells
Project Goal: Successfully generated a small fragment deletion in Gene A within Huh6 cells, resulting in complete loss of target gene function.
Project Design: In Huh6 cells, two guide RNAs were designed to target the coding region of Gene A, achieving a fragment knockout.
 
 
 
Sequencing results: We successfully achieved the knockout of Gene A, as mutations occurred at the guide RNA target site in the monoclonal cell line, resulting in a 73 bp deletion. This deletion caused a frameshift mutation, leading to premature termination of gene encoding.
 
3. Double Knockout (dKO)
Simultaneous knockout of two genes within the same cell line or organism. This approach is used to study genetic interactions, redundancy, or compensatory mechanisms between related pathways.
Enables the dissection of complex biological networks by targeting multiple genes at once.

Case Study Highlights
Objective: Double Gene Knockout in THP-1 Cells
Project Goal: Engineered a simultaneous knockout of Gene B and Gene C in THP-1 cells, enabling the study of genetic interactions and compensatory mechanisms.
Project Design: Two sgRNAs were designed in the exon region of gene B, and two sgRNAs were designed in the exon region of gene C.
 
B:
 
 
C:
 
 
Sequencing results: In THP-1 cells, a 7-base deletion occurred at the sgRNA site of gene B with a knockout efficiency of 100%, causing a frameshift mutation and premature termination of expression, indicating that gene B was successfully knocked out. Simultaneously, a 2-base deletion occurred at the sgRNA site of gene C with a knockout efficiency of 100%, resulting in a frameshift mutation and premature termination of expression, indicating a successful knockout of gene C.
 
B:
 
C:

Advantage and Characteristic

Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic
Optimazied Strategy
We have create a unique sgRNA Design Logic

Reference Materials

Article Title: Bromodomain protein BRD4 promotes cell proliferation in skin squamous cell carcinoma

Recent studies show that the incidence of skin squamous cell carcinoma (SCC) is rapidly increasing, with this and other non-melanoma skin cancers leading to numerous deaths annually. Over 20% of the global population may develop skin cancer during their lifetime. BRD4 has been proposed as a potential oncogenic protein, but its role in skin SCC remains understudied.
Researchers used CRISPR/Cas9 to directly knockout the BRD4 gene in SCC cells. BRD4-knockout or silenced cells showed a significant reduction in proliferation, and the expression of oncogenes closely related to cell proliferation (e.g., cyclin D1, Bcl-2, MYC) was significantly decreased. In vivo experiments showed that BRD4 knockout significantly inhibited tumor growth in A431 cells in SCID mice. BRD4 knockout cells and its relevant findings suggest that BRD4 could be a therapeutic target in skin squamous cell carcinoma.

Article Title: GPER Mediates a Feedforward FGF2/FGFR1 Paracrine Activation Coupling CAFs to Cancer Cells toward Breast Tumor Progression

The fibroblast growth factor (FGF)-fibroblast growth factor receptor (FGFR) signaling axis is a key mediator of interactions between the tumor stroma and cancer cells. FGFR1 activation through translocation, point mutations, or gene amplification can lead to cancer progression. In addition, G-protein-coupled estrogen receptor (GPER, GPR30) has been identified as a receptor mediating estrogen's role in various pathophysiological conditions.
To investigate how GPER mediates communication between cancer-associated fibroblasts (CAFs) and breast cancer cells through the FGF2/FGFR1 signaling axis, researchers used CRISPR/Cas9 gene editing to knockout FGFR1 in the MDA-MB-231 breast cancer cell line. Conditioned media (CM) from estrogen-stimulated CAFs induced the expression of connective tissue growth factor (CTGF) in FGFR1 wild-type (WT) MDA-MB-231 cells and promoted migration and invasion via the FGFR1-ERK1/2-AKT signaling pathway. However, this effect was significantly reduced or abolished in FGFR1-knockout cells. FGFR1 knockout cells have revealed a novel role of GPER in regulating FGF2 expression within the tumor microenvironment. The study confirmed that FGFR1 gene amplification is closely associated with overall survival rates in breast cancer patients, suggesting that FGFR1 could serve as a potential therapeutic target in breast cancer treatment. Furthermore, it elucidates the paracrine activation between cancer-associated fibroblasts (CAFs) and breast cancer cells, providing a theoretical foundation for the development of new therapeutic strategies.

Article Title: BRCA1 regulates HMGA2 levels in the Swan71 trophoblast cell line

In early placental development, tumor suppressor genes and oncogenes work together to regulate cell proliferation and differentiation. BRCA1 is a well-known tumor suppressor gene that forms a complex with ZNF350 and CtIP to bind to the promoter region of the HMGA2 gene, preventing its transcription. This regulation has been studied in cancer cells but less so in placental cells.
Researchers used the CRISPR-Cas9 system to knockout the BRCA1 gene in the Swan71 cell line, generating BRCA1-knockout cells. Lentiviral particles with miR-182 overexpression were used to overexpress miR-182 in Swan71 cells. The results showed that BRCA1-knockout cells had significantly higher HMGA2 mRNA and protein levels compared to wild-type cells. miR-182 overexpression led to a decrease in BRCA1 protein levels and an increase in HMGA2 protein levels. BRCA Knockout Cell Lines and its relevant findings demonstrate that BRCA1 plays an important role in regulating HMGA2 levels in trophoblast cells and may be involved in placental development and function by influencing apoptosis, providing new insights into BRCA1's role in placental development.

Article Title: ATM depletion induces proteasomal degradation of FANCD2 and sensitizes neuroblastoma cells to PARP inhibitors

Neuroblastoma (NB) is a common pediatric solid tumor characterized by high clinical and prognostic heterogeneity. Despite multiple treatment strategies, tumors in high-risk NB patients exhibit resistance to standard therapies and may progress to metastasis. ATM gene is involved in DNA damage response, and heterozygous deletions or hemizygous mutations of the ATM gene located on chromosome 11q are mutually exclusive in NB tumors. While ATM knockdown has been shown to promote tumor formation in NB cell lines in vitro and in vivo, the connection between ATM and tumor formation or cancer invasiveness remains unclear.
Researchers used CRISPR/Cas9 technology to knockout the ATM gene in NGP and CHP-134 NB cell lines, analyzing cell proliferation and colony formation capabilities, and protein expression related to DNA repair pathways through Western blot. In ATM-knockout cells, stable transfection of FANCD2 expression plasmids was used to overexpress FANCD2. Immunofluorescence microscopy was employed to determine protein expression. The results showed that ATM depletion leads to a decrease in FANCD2 protein levels, and ATM-knockout cells are more sensitive to the PARP inhibitor. Reintroduction of FANCD2 in ATM-knockout cells restored cell proliferation capacity. ATM knockout cells and its relevant findings reveal the role of ATM haploinsufficiency in neuroblastoma and illustrate how ATM inactivation enhances NB cell sensitivity to PARP inhibitor, which is significant for treating high-risk NB patients with ATM gene dosage and cancer progression issues.

Selected Customer Resources

IF=50.5
Nature

Abstract:

To date, more than half of global hepatocellular carcinoma (HCC) cases occur in China, yet comprehensive whole-genome analyses focusing on HBV-related HCC within the Chinese population remain scarce. To address this challenge, researchers initiated the China Liver Cancer Atlas (CLCA) project, aiming to conduct large-scale whole-genome sequencing to unravel the unique pathogenic mechanisms and evolutionary trajectories of HCC in China.

The researchers performed deep whole-genome sequencing on 494 HCC tumor samples, with an average depth of 120×, alongside matched blood controls, providing a detailed genomic landscape of HBV-associated HCC. Beyond confirming well-known coding driver genes such as TP53 and CTNNB1, the study identified six novel coding drivers—including FGA—and 31 non-coding driver genes.

Additionally, the research uncovered five new mutational signatures, including SBS_H8, and characterized the presence of extrachromosomal circular DNA (ecDNA) formed via HBV integration, which contributes to oncogene amplification and overexpression. Functional validation experiments demonstrated that mutations in genes such as FGA, PPP1R12B, and KCNJ12 significantly enhance HCC cell proliferation, migration, and invasion.

These findings not only deepen our insights into the genomics of HCC, but also open up new potential targets for diagnosis and therapy. View details>>

Candidate driver landscape

 

IF=27.4
Advanced Materials

Abstract:

During the acute inflammatory phase of tendon injury, excessive activation of macrophages leads to the overexpression of SPP1, which encodes osteopontin (OPN), thereby impairing tissue regeneration. The CRISPR-Cas13 system holds great promise for tissue repair due to its unique RNA editing and rapid degradation capabilities; however, its application has been limited by the lack of efficient delivery methods.

To address this, the researchers systematically screened various cationic polymers targeting macrophages and developed a nanocluster carrier capable of efficiently delivering Cas13 ribonucleoprotein complexes (Cas13 RNPs) into macrophages. Utilizing a reactive oxygen species (ROS)-responsive release mechanism, this system specifically suppresses the overexpression of SPP1 in macrophages within the acute inflammatory microenvironment of tendon injury.

Experimental results demonstrated that this targeted delivery strategy significantly reduced the population of SPP1-overexpressing macrophages induced by injury, inhibited fibroblast activation, and alleviated peritendinous adhesion formation. Furthermore, the study elucidated that SPP1 promotes fibroblast activation and migration through the CD44/AKT signaling pathway, and that inhibiting this pathway effectively mitigates adhesion formation following tendon injury. View details>>

Schematic diagram illustrating immune microenvironment-activated mRNA editing strategies of macrophages for PA therapy

IF=12.8
Biomaterials

Abstract:

Spinal cord injury (SCI) is a severe disabling condition that causes permanent loss of sensory, autonomic, and motor functions. While stem cell therapies, particularly mesenchymal stem cells (MSCs), show great promise for SCI treatment, their limited regenerative capacity restricts their application in tissue repair. The researchers observed that extracellular vesicles derived from antler bud progenitor cells (EVsABPC) may carry bioactive signals that promote tissue regeneration. Accordingly, they isolated and engineered EVs from ABPCs for SCI therapeutic investigation.

The study found that EVsABPC significantly enhanced neural stem cell (NSC) proliferation, promoted axonal growth, reduced neuronal apoptosis, and modulated inflammation by shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Moreover, engineered EVsABPC modified with cell-penetrating peptides demonstrated improved targeting to the SCI lesion site, markedly enhancing neural regeneration and functional motor recovery. These findings highlight EVsABPC as a promising candidate for SCI therapy. View details>>

Graphical abstract

IF=11.3
Journal of Hazardous Materials

Abstract:

S-metolachlor (S-MET) is one of the most widely produced and applied herbicides in China. Owing to its chemical properties, it tends to persist in soil and easily contaminates surface and groundwater through leaching and runoff. This environmental persistence poses a serious threat to plant development and, through the food chain, to human health.

To address the limitations of current detection technologies and meet the growing demand for high-efficiency analytical tools, the researchers employed a mammalian expression system to generate recombinant antibodies targeting S-MET.

Building on the successful expression of these antibodies, they established a sensitive immunoassay for monitoring S-MET residues in various environmental water samples. The icELISA results showed that the recombinant antibodies retained the sensitivity, specificity, and biological activity of the original monoclonal antibodies, delivering accurate and reproducible detection in river water, agricultural runoff, and tap water. View details>>

Graphical abstract

 

IF=10.7
Biosensors and Bioelectronics

Abstract:

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression by interacting with the mRNAs of target genes. Given their crucial role in the development and progression of various diseases, miRNAs have emerged as promising biomarkers for clinical diagnostics.

In this study, researchers established a novel detection platform, termed DBmRCA, which combines dumbbell probe-initiated multi-rolling circle amplification with the high-sensitivity signal output of CRISPR/Cas12a. This enzyme-free, isothermal method enables accurate quantification of miRNA within just 30 minutes.

Clinical validation revealed that the expression levels of miR-200a and miR-126 were significantly downregulated in lung cancer tissues, and results from DBmRCA were consistent with those obtained by conventional techniques. With its high sensitivity, rapid turnaround, and simplified workflow, the DBmRCA platform presents a reliable tool for miRNA detection and holds strong promise for early diagnosis and therapeutic monitoring of lung cancer. View details>>

Graphical abstract

FAQ

KO cell lines can be applied to various cell types, including cancer cells, stem cells, and primary cells, but different cell types may have varying sensitivities to gene editing, and may vary among different cell types. In certain cell types, achieving gene knockout may require optimization of transfection conditions and selection of appropriate gene-editing tools.
KO (Knockout) cell line is a cell line where a specific gene has been completely removed or rendered non-functional through gene editing technologies such as CRISPR-Cas9. These cell lines are critical for understanding gene functions and disease mechanisms.
EDITGENE provides access to a comprehensive library of over 4,500 high-quality knockout (KO) cell lines, enabling researchers to save valuable time. Our custom gene knockout services are highly efficient, boasting a high positive rate while minimizing off-target effects. Clients also benefit from personalized, one-on-one support from a team of PhD experts from globally renowned institutions, ensuring top-tier service and results.
Researchers use KO cell lines to investigate gene functions by observing the effects of gene deletion on cellular behavior. This helps in understanding the role of genes in various processes like cell growth, metabolism, and signal transduction. KO cell lines are vital for studying diseases like cancer, genetic disorders, and neurodegenerative diseases.
Not all genes are suitable for knockout. Some gene knockouts may result in cell death or severe dysfunction, particularly for essential genes. In such cases, conditional knockouts or gene knockdowns (e.g., RNAi) may be used instead.
KO cell lines are used for in vitro experiments, suitable for high-throughput screening and cellular studies, while gene knockout animal models are used for in vivo experiments to study gene functions within an entire organism and its interaction with the environment.

Contact Us

*
*
*
*
How did you hear about us:
Contact Us
*
*
*
*
How did you hear about us: