Lentiviral Packaging
Service Details
Services | Knockout Lentivirus / Overexpression Lentivirus / Interference Lentivirus / Library Virus |
---|---|
Deliverables |
1. Titer Report 2. Map 3. Lentivirus |
Turnaround/Price |
|
EDI-Service Advantages
Efficient Packaging System
Scientific Titer Measurement Method
Extremely High Safety
Experienced Team
Service Types
Knockout Lentivirus | Delivers and integrates the CRISPR/Cas9 knockout system into the genome, enabling efficient knockout of target genes |
---|---|
Overexpression Lentivirus | Delivers and integrates exogenous gene fragments into the genome for efficient and stable expression of gene fragments |
Interference Lentivirus | Delivers and integrates the shRNA interference system into the genome for long-term and stable knockdown of target genes |
Library Virus | Delivers CRISPR/Cas library plasmids to cells and integrates them into the genome, effectively creating gene-edited mixed cell pools |
Delivery Standards
Gene Knockout Virus, Overexpression Virus, Interference Virus | CRISPR/Cas9 Library Lentivirus |
---|---|
Titer Report |
Titer Report |
Plasmid Map | Plasmid Map |
Operation Manual |
Library Lentivirus( ≥1×106 TU/mL, delivery sizes:1×108 TU、5×108 TU、1×109 TU) |
Lentivirus (Titer ≥ 1×106 TU/mL,1 mL) |
Workflow
Literature Review

Advantage and Characteristic

Optimazied Strategy

Optimazied Strategy

Optimazied Strategy

Optimazied Strategy
Reference Materials
Constructing CBLB-overexpressing 293T cells using CBLB-OE lentivirus
Specific changes in gut microbiota and metabolites are associated with acute myocardial infarction (AMI), and CBLB may play an important role in this process. However, the specific mechanisms of these interactions have not been thoroughly studied, leading to significant gaps in understanding. This study aims to investigate the effects of CBLB intervention on AMI mice through transcriptomic sequencing, 16S rDNA, and untargeted metabolomic analyses. The research team employed a multi-omics integrated strategy, including the transfection of CBLB lentiviral packaging vectors into 293T cells, followed by intervention in AMI mice, and conducting pathological staining, fecal 16S rDNA sequencing, and serum untargeted metabolomics analysis. The results showed that CBLB intervention significantly reduced inflammatory cell infiltration and collagen fiber formation in the infarct area of the mouse heart and led to key changes in microbiota, metabolites, and differentially expressed genes (DEGs). This suggests that CBLB may play a significant role in the regulation of AMI. The study confirms the potential of differentially expressed genes, metabolites, and microbiota in AMI regulation after CBLB intervention, providing a basis for future exploration of the therapeutic applications of CBLB.
Constructing SENP1-knockdown glioma stem cells (GSCs) using SENP1-shRNA lentivirus
This study explores the impact of SENP1-mediated deSUMOylation on the malignant behavior of glioma stem cells (GSCs) under hypoxic conditions and its clinical significance. Under hypoxic conditions, HIF1α upregulation activates the Wnt/β-catenin signaling pathway in GSCs, supporting glioblastoma (GBM) growth. SENP1-mediated deSUMOylation stabilizes the expression of HIF1α and β-catenin, promoting tumor formation driven by GSCs. Downregulating SENP1 expression in GSCs using lentivirus-packaged SENP1 shRNA resulted in decreased proliferation and differentiation of GSCs, with a reduction in tumorigenesis.HIF1α-induced activation of Wnt/β-catenin is dependent on SENP1-mediated deSUMOylation, promoting GSC-driven GBM growth. The study suggests that targeting SENP1 may effectively enhance the therapeutic efficacy for GBM.
Selected Customer Resources
Deep whole-genome analysis of 494 hepatocellular carcinomas
Abstract:
To date, more than half of global hepatocellular carcinoma (HCC) cases occur in China, yet comprehensive whole-genome analyses focusing on HBV-related HCC within the Chinese population remain scarce. To address this challenge, researchers initiated the China Liver Cancer Atlas (CLCA) project, aiming to conduct large-scale whole-genome sequencing to unravel the unique pathogenic mechanisms and evolutionary trajectories of HCC in China.
The researchers performed deep whole-genome sequencing on 494 HCC tumor samples, with an average depth of 120×, alongside matched blood controls, providing a detailed genomic landscape of HBV-associated HCC. Beyond confirming well-known coding driver genes such as TP53 and CTNNB1, the study identified six novel coding drivers—including FGA—and 31 non-coding driver genes.
Additionally, the research uncovered five new mutational signatures, including SBS_H8, and characterized the presence of extrachromosomal circular DNA (ecDNA) formed via HBV integration, which contributes to oncogene amplification and overexpression. Functional validation experiments demonstrated that mutations in genes such as FGA, PPP1R12B, and KCNJ12 significantly enhance HCC cell proliferation, migration, and invasion.
These findings not only deepen our insights into the genomics of HCC, but also open up new potential targets for diagnosis and therapy. View details>>
Candidate driver landscape
Targeted Macrophage CRISPR-Cas13 mRNA Editing in Immunotherapy for Tendon Injury
Abstract:
During the acute inflammatory phase of tendon injury, excessive activation of macrophages leads to the overexpression of SPP1, which encodes osteopontin (OPN), thereby impairing tissue regeneration. The CRISPR-Cas13 system holds great promise for tissue repair due to its unique RNA editing and rapid degradation capabilities; however, its application has been limited by the lack of efficient delivery methods.
To address this, the researchers systematically screened various cationic polymers targeting macrophages and developed a nanocluster carrier capable of efficiently delivering Cas13 ribonucleoprotein complexes (Cas13 RNPs) into macrophages. Utilizing a reactive oxygen species (ROS)-responsive release mechanism, this system specifically suppresses the overexpression of SPP1 in macrophages within the acute inflammatory microenvironment of tendon injury.
Experimental results demonstrated that this targeted delivery strategy significantly reduced the population of SPP1-overexpressing macrophages induced by injury, inhibited fibroblast activation, and alleviated peritendinous adhesion formation. Furthermore, the study elucidated that SPP1 promotes fibroblast activation and migration through the CD44/AKT signaling pathway, and that inhibiting this pathway effectively mitigates adhesion formation following tendon injury. View details>>
Schematic diagram illustrating immune microenvironment-activated mRNA editing strategies of macrophages for PA therapy
Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophage and bone repair via MAPK/JNK inhibition and OXPHOS activation
Abstract:
Spinal cord injury (SCI) is a severe disabling condition that causes permanent loss of sensory, autonomic, and motor functions. While stem cell therapies, particularly mesenchymal stem cells (MSCs), show great promise for SCI treatment, their limited regenerative capacity restricts their application in tissue repair. The researchers observed that extracellular vesicles derived from antler bud progenitor cells (EVsABPC) may carry bioactive signals that promote tissue regeneration. Accordingly, they isolated and engineered EVs from ABPCs for SCI therapeutic investigation.
The study found that EVsABPC significantly enhanced neural stem cell (NSC) proliferation, promoted axonal growth, reduced neuronal apoptosis, and modulated inflammation by shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Moreover, engineered EVsABPC modified with cell-penetrating peptides demonstrated improved targeting to the SCI lesion site, markedly enhancing neural regeneration and functional motor recovery. These findings highlight EVsABPC as a promising candidate for SCI therapy. View details>>
Graphical abstract
Generation of recombinant antibodies by mammalian expression system for detecting S-metolachlor in environmental waters
Abstract:
S-metolachlor (S-MET) is one of the most widely produced and applied herbicides in China. Owing to its chemical properties, it tends to persist in soil and easily contaminates surface and groundwater through leaching and runoff. This environmental persistence poses a serious threat to plant development and, through the food chain, to human health.
To address the limitations of current detection technologies and meet the growing demand for high-efficiency analytical tools, the researchers employed a mammalian expression system to generate recombinant antibodies targeting S-MET.
Building on the successful expression of these antibodies, they established a sensitive immunoassay for monitoring S-MET residues in various environmental water samples. The icELISA results showed that the recombinant antibodies retained the sensitivity, specificity, and biological activity of the original monoclonal antibodies, delivering accurate and reproducible detection in river water, agricultural runoff, and tap water. View details>>
Graphical abstract
Dumbbell probe initiated multi-rolling circle amplification assisted CRISPR/Cas12a for highly sensitive detection of clinical microRNA
Abstract:
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression by interacting with the mRNAs of target genes. Given their crucial role in the development and progression of various diseases, miRNAs have emerged as promising biomarkers for clinical diagnostics.
In this study, researchers established a novel detection platform, termed DBmRCA, which combines dumbbell probe-initiated multi-rolling circle amplification with the high-sensitivity signal output of CRISPR/Cas12a. This enzyme-free, isothermal method enables accurate quantification of miRNA within just 30 minutes.
Clinical validation revealed that the expression levels of miR-200a and miR-126 were significantly downregulated in lung cancer tissues, and results from DBmRCA were consistent with those obtained by conventional techniques. With its high sensitivity, rapid turnaround, and simplified workflow, the DBmRCA platform presents a reliable tool for miRNA detection and holds strong promise for early diagnosis and therapeutic monitoring of lung cancer. View details>>
Graphical abstract