EDITGENE CO., LTD

...
17800 CASTLETON ST STE 665, CITY OF INDUSTRY,CA 91748
...
info@editxor.com
...
833-2263234 (USA Toll-free)

+1-224-345-1927 (USA)

+86 19120102676(Intl)

...
17800 CASTLETON ST STE 665, CITY OF INDUSTRY,CA 91748

China

  Room 501, Building D, Guangzhou International Business Incubator, No.3, Congquan Road, Science City, Huangpu District, Guangzhou City, Guangdong Province, China

View Map

U. S.  A

  17800 CASTLETON ST STE 665, CITY OF INDUSTRY,CA 91748


View Map

Request A Quote

Please select country

Support Center

Available: Monday to Friday, 8:00 AM - 6 PM
Toll-Free (USA): +833-226-3234
Direct Line (USA): +1-224-345-1927
Email: admin@editxor.com

Available: Monday to Sunday, 6PM - 8:00 AM
International Line: +86-19120102676
Email: info@editxor.com

Whatsapp - "Connect with us instantly on WhatsApp for quick inquiries and real-time support."

Office WhatsApp

Welfare
Activities
Practise Knowledge
Scientifical Research

Facebook Messenger - "Reach out to us on Facebook Messenger for personalized assistance and detailed information."

Linkedin - "Engage with us on LinkedIn for professional inquiries, the latest blogs, discoveries, and updates on our innovative work."

FAQ

What is a KO cell line?
KO (Knockout) cell line is a cell line where a specific gene has been completely removed or rendered non-functional through gene editing technologies such as CRISPR-Cas9. These cell lines are critical for understanding gene functions and disease mechanisms.
Not all genes are suitable for knockout. Some gene knockouts may result in cell death or severe dysfunction, particularly for essential genes. In such cases, conditional knockouts or gene knockdowns (e.g., RNAi) may be used instead.
KO cell lines are used for in vitro experiments, suitable for high-throughput screening and cellular studies, while gene knockout animal models are used for in vivo experiments to study gene functions within an entire organism and its interaction with the environment.
EDITGENE brings 10 years of CRISPR-based cell editing experience and offers one-on-one support from a team of PhDs from globally recognized institutions.
1.The design process can follow these steps:
1.Identify the target gene sequence.
2.Specify the Cas protein being used. Different Cas proteins require corresponding PAM (Protospacer Adjacent Motif) sequences; for instance, Cas12a needs the "TTTV" PAM sequence for target recognition.
3.Select the crRNA targeting region. Choose a 20 nt nucleotide sequence on the target gene that is adjacent to the PAM site and pairs with the complementary strand of the crRNA.
4.Combine the selected 20 nt target sequence (variable part) with the scaffold sequence (fixed part) to design the crRNA sequence.
5.Use online tools such as CRISPR design tools (e.g., CRISPOR, Benchling, etc.) to assist in designing crRNA. These tools can predict the efficiency and specificity of the sgRNA, helping to avoid potential off-target effects.
6.After completing the design, the synthetic crRNA sequence can be ordered from a synthetic biology company.
Traditional CRISPR/Cas9 technology achieves gene editing by introducing double-strand breaks at the target DNA site and then using the cell’s homologous recombination repair mechanism. This approach carries multiple risks, such as lower editing efficiency, reduced homozygous mutation rates, and random insertions or deletions. Prime Editing, however, does not require double-strand breaks. With its Cas9n-RT editing enzyme system and pegRNA, Prime Editing achieves more accurate and safer gene editing with reduced off-target effects.
Monoclonal screening is the process of isolating a single clone from a mixed pool of cells and expanding that clone into a cell line. Monoclonal screening ensures that the cell lines used originate from a single cell, guaranteeing a high degree of genetic background consistency. After cells are gene-edited or genetically modified, the genetic background differences among the cells in the initial cell pool can be significant, making subsequent experimental results inaccurate. By using monoclonal screening, researchers can obtain cell populations with consistent genetic backgrounds and stable gene edits, allowing for stable and accurate monitoring of phenotypic changes.
EDGENE
Contact US
web logo
Kathy
Tel: info@editxor.com
Tel: 833-2263234
(USA Toll-free)
Tel: +1-224-345-1927
(USA)
Tel: +86-19120102676
(Intl)