T7 Transcription Kit Instruction

Product Code

EDN-T7

Description

This kit is optimized for in vitro transcription using T7 RNA Polymerase. It efficiently transcribes DNA sequences downstream of a T7 promoter, using supercoiled plasmid DNA or linear DNA with a T7 promoter as a template. The kit is ideal for producing high-concentration RNA longer than 6000 nt. Using 1 μ g of DNA template in a 20 μ l reaction can yield 150–280 μ g of RNA. For milligram-level RNA production, the reaction scale can be increased in parallel. The generated RNA is suitable for in vitro translation, RNase protection assays, RNA splicing, and hybridization probe labeling.

Storage

Store at -20°C for one year.

Component

Component	EDN-T701(25rxns)	EDN-T702(100 rxns)
T7 Transcription Enzyme Mix	50µl	200µl
5×T7Transcription Reaction Buffer	100µl	400µl
ATP(100mM)	50µl	200µl
GTP(100mM)	50µl	200µl
CTP(100mM)	50µl	200µl
UTP(100mM)	50µl	200µl
DNaseI(1 unit/ul)	50µl	200µl
500mM EDTA(pH 8.0)	25µl	100µl
RNase-free Water	1ml	5ml
Transcription Control Template(0.5µg/µl)	10µl	40µl

Template reference

T7 Promoter: 5'-TAATACGACTCACTATAGG<u>G</u>#-3' #:G/A

Template Volume	RNA yield	
2µg	170~320µg	
1 µg	150~280µg	
500 ng	100~180µg	
200 ng	40~80µg	
100 ng	15~40µg	
50ng	10~20µg	
10ng	4~8μg	
lng	2~6µg	

Operational Procedure

1. Briefly centrifuge all components except the T7 Enzyme Mix, collect them at the bottom of the tube.

2. Prepare the transcription reaction:

Component	Volume	Final Concentration
Template	lng~2µg	NA
5×T7 Transcription Reaction Buffer	4µl	1×
A/G/C/UTP	1.6µl each	8mM each
T7 Transcription Enzyme Mix	2µl	NA
RNase-free Water	Variable	NA
Total Volume	20µl	20µl

Note: Pre-calculate the reaction system, and add the components in the following order: Water \rightarrow *Buffer* \rightarrow *NTP* \rightarrow *DNA Template* \rightarrow *Enzyme.*

3. Gently mix the components using a pipette and briefly centrifuge to collect them at the bottom of the tube. Incubate at 37°C for 2 hours.

Note: To prevent evaporation during prolonged transcription, it is recommended to conduct the reaction in a PCR machine with the heated lid set to 65°C. The amount of template and incubation time can be adjusted as needed.

4. DNA Template Digestion: After the reaction is complete, add 2 μ l of DNase I and incubate at 37°C for 30 minutes. After digestion, add 1 μ l of 500 mM EDTA (pH 8.0) to terminate the reaction (proceed to purification immediately after adding EDTA), or skip the EDTA and go directly to the purification steps.

5. Product Purification

6. Quantification and Detection of Transcription Products:

(1) Measure RNA concentration using a UV spectrophotometer. If the product concentration is extremely high, dilution prior to measurement is recommended.

(2) For RNA products ranging from 100 to 1000 nt, use a 6% polyacrylamide, 7M urea denaturing gel for detection, with $1 \times$ TBE Buffer as the electrophoresis buffer.

•10× TBE Buffer: 0.9 M Tris Base, 0.9 M Boric Acid, 20 mM EDTA.

• Gel Preparation Method: In every 10 ml, mix 4.2 g of urea, 4.4 ml of RNase-free water, 1.5 ml of 40% acrylamide (19:1 acrylamide), 1 ml of $10 \times$ TBE Buffer, 100 µl of 10% APS, and 10 µl of TEMED. Add APS and TEMED after the urea has completely dissolved.

(3) For RNA products ranging from 500 to 6000 nt, a 1% formaldehyde agarose denaturing gel is recommended for detection, with $1 \times$ MOPS Buffer as the electrophoresis buffer.

10× MOPS Buffer: 0.4 M MOPS (pH 7.0), 0.1 M Sodium Acetate, 10 mM EDTA.

•Gel Preparation Method: In every 100 ml, weigh 1 g of agarose and add it to 72 ml of RNase-free water. Heat to dissolve, then add 10 ml of $10 \times MOPS$ Buffer. Once the solution cools to 50-60°C, add 18 ml of formaldehyde (37%), mix, and cast the gel.

(4) For electrophoresis detection, take 0.2–1 μ g of RNA, dilute it to 5 μ l with RNase-free water, and mix with an equal volume of 2× RNA Loading Buffer. Incubate at 70°C for 10 minutes, then place on ice for 2 minutes before loading the entire sample. After electrophoresis, stain with Gelstain or EB for visualization. Use the same treatment method for the RNA Marker as for the RNA samples (or refer to the supplier's instructions).

Reference Statistics

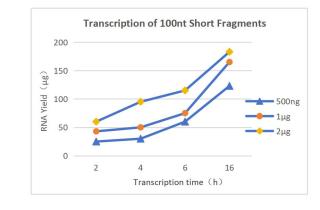


Figure 1. Relationship between RNA Transcription Yield and Template Input Amount/Transcription Time for RNA Lengths Less than 300 nt in a 20 µl Reaction System

